Dimensional Reconstitution Of The Integral Atherosclerotic Plaque As Integral Atherogenesis.

Lawrence M. Agius

Department Of Pathology, Mater Dei Hospital, Tal-Qroqq, University Of Malta Medical School, Msida, Malta Europe.

Corresponding Author: Lawrence M. Agius, Department Of Pathology, Mater Dei Hospital, Tal-Qroqq, University Of Malta Medical School, Msida, Malta Europe, Email: lawrence.agius@um.edu.mt, Tel no: 356-21451752.

Citation: Lawrence M. Agius, (2017) Dimensional Reconstitution Of The Integral Atherosclerotic Plaque As Integral Atherogenesis. Int J clinical & case. 1:2, 51-53.

Copyright: © 2017 Lawrence M. Agius. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received February 17, 2017; Accepted February 28, 2017; Published March 31, 2017.

Abstract

Propositional events as injurious agonists attest to the progression of an injury that is repetitively re-duplicated within the cardiovascular system as a whole. In such terms the equivalent dimensions of the reproduction of the signal atherosclerotic plaque are further compounded by the dimensional re-distribution of integral lesions that mirror-image the consequences of lipid deposition and of accumulation of foam cells as projected by a generic and ongoing inflammatory series of vascular reactivities. Performance attributes of pathogenesis are incremental systems for further propositional conditioning within reactivation formulas of the inflammatory process as induced within systems of profile determination of the atherogenesis phenomenon.

Keywords: Mental Health, Life Satisfaction, Aged People.

Introduction

The pathogenesis of atherosclerosis as a genesis phenomenon may be viewed in terms of the ongoing dynamics of multifocal disruption of both endothelial function and the proliferation of smooth muscle cells in the tunica media. Present evidence is strongly suggestive of metabolic syndrome and atherosclerosis in terms of chronic inflammation, predicting cardiovascular disease (1). It is within the context of dynamic inflammatory events that the ongoing changes transform the homeostatic pre-conditioning of endothelial cells as specific dysfunctionalities that the Nuclear Factor-kappa B pathways assume significant relevance to the activation of atherogenesis.

Inflammation And Pro-Inflammation

The process of turnover of inflammatory ligands that bind G-protein coupled receptors assumes a central role for the initiation and subsequent further activation of key pathway steps in transforming the subintima within contextual preconditioning that implicates endothelial dysfunctions in atherogenesis. Oxidised phospholipids in particular are recognised as regulators of thrombosis, inflammation and endothelial barrier function (2). The further accumulative phenomena of lipid and matrix proteins within the subintima are progressive aspects of a process involving permissive induction of the injury to intima, subintima and tunica media smooth muscle as further projected within the set regulatory systems of facilitated permutation of the CARMA3/Bcl-10/MALT-1 signalosome pathways of influence. Retinol-binding protein 4 increases levels in serum leads to insulin resistance and promotes atherosclerosis and arterial hypertension (3). Distribution of multifocal deposits of lipid, particularly oxidised low-density lipoproteins, indicates the active induction of inflammation-driven dysfunctionality primarily at the individual endothelial cell level. Platelets degrade large RNA species and concomitantly up regulate a distinct class of small RNA species implicated in atherosclerosis, inflammation and neurodegeneration; platelet extracellular vesicles enrich miRNA species (4).

Dynamic Turnover

Considerable preferential involvement of dynamic turnover is a key characteristic of pro-inflammation in the activation of atherogenic pathways of promotion in transforming the subintima as central focus for continued persistent reservoir of lipid and foam cells. In addition to its anti-inflammatory effects, hydroxychloroquine...
lowers cholesterol levels and the risk of type II diabetes\(^{(5)}\). Within such contextual reformulation of the injury there emerges the dimensional promotion of events of accumulation in terms of transforming induction of tissues within the vascular wall. Monocyte activation appears to occur at the initial stages of atherosclerosis \(^{(6)}\). In such terms, the particularly specific neo-vascularization of the lipid-laden subintima is significantly implicated as pro-inflammatory pathways of persistent injurious events.

It is further to such persistence of ongoing insults to the subintima that NF-kB effects are prominent pathways converging on dynamics of phosphorylation and ubiquination and of receptor-mediated pathways by Angiotensin-II, Thrombin, and Interleukin-8.

Vaso-Reactivity

Molecular scaffolding in the NF-kappaB pathways and the adhesion molecular biology phenomena delineate aspects of the endothelial dysfunctional state. MicroRNA-155 is involved in vascular remodelling, inflammation, and hematopoietic lineage differentiation and is linked to coronary artery disease and abdominal aortic aneurysm formation \(^{(7)}\). It is important to consider the vaso-regulatory functionalities of groups of endothelial cells as formal agonists in the induction of the atherogenesis as a progressive series of transforming events of the vascular wall. Endothelial cells play a crucial role in inflammation and glucocorticoids affect expression of endothelial cell adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintained integrity of the endothelial barrier \(^{(8)}\). Vaso-regulation relates to dynamics of vasoconstriction and vasodilation as induced particularly by nitric oxide and angiotensin II. Also, the stimulatory effects of Vascular Endothelial Growth Factor (VEGF) are coupled by the inducing effects of increased permeability of the neovasculature within the lipid-core of the atherosclerotic plaque. In such terms, stability of such plaques revolves around the integrity of the fibrous cap separating the lipid core from the overlying endothelium.

Consideration of the pro-inflammatory dynamics as the inherent nature of endothelial dysfunction and of the generic atherogenic process includes dimensions of injury primarily to the subintima as primarily focal and also multifocal manifestations of inducing influence. Chronic low-grade background inflammation is common in atherosclerosis, and plaque rupture may in turn follow increased plaque inflammation \(^{(9)}\). Pathobiology of atherogenesis is primarily characterised by dynamic reproduction of injury as membrane permeability of integral groups of dysfunctional endothelium on the one hand, and as processes of breakdown by proteases of adhesion molecular machineries.

Mirror Images

Mirror-image phenomena of replacement of subcomponents of the subintima indicate a natural serial pathway event that is reduplicated within multi-focal plaques as characteristic of atherogenesis within such vessels as the abdominal aorta. CD98 heavy chain expression on vascular smooth muscle cells is required for their proliferation and hence protects against atherothrombosis \(^{(10)}\). Hypoxia is a central serially inducing influence in the propagation of subintimal targeting and as further evidenced by components of both G-protein coupled receptivity and pro-inflammatory conditioning.

Dimensional Projections

Configurational dimensional propositions in the re-creation of injurious events are central inducers within the widespread spectral components of pathogenic pathways for further progression of the atherogenesis. It is further proposed that the included complexities of lipid deposition assume dynamics of progression that belie a passive series of steps in lipid deposition within the subintima.

Molecular co-adaptors, chaperones and scaffold entities are specifying molecular means of targeting of the vascular wall in a manner that cooperatively implicates vasotonicity and vasoreactivity of the vessels affected by atherogenesis. Myocardin, a contractile and differentiated smooth muscle phenotype, is implicated in lipid metabolism and its loss constitutes a dedifferentiated phenotype in vascular inflammation and atherosclerosis \(^{(11)}\). It is further significant to consider the phases in lipid deposition within the intimate as processing pathways of attempted reconstitution of the vascular wall and also as a series of attempts that pathobiologically maintain the lumen of the affected vascular segment.

Hypoxia

Included parameters of hypoxia are dimensionally related to the targeted sites of atherogenesis in a manner that calls into operative dynamics the constitutional series of genetic and homeostatic mechanisms of establishment and progression of the atherosclerotic plaque. In this regard, fibroblast growth factor 21 has lipid-lowering anti-inflammatory and anti-oxidant attributes in inhibiting atherosclerosis \(^{(12)}\). Inclusion of powerful lipidization pathways are manifestations of an inherent predisposition for further dynamic accumulation of oxidised lipoprotein of predominantly low-density type. Plasma lutein reflects vegetable and fruit intake and may prevent oxidation of lipid in the lipoproteins and its deposition in the intimal layers \(^{(13)}\). Realised induction is further confirmation of the staged phases of injury that determine particularly the hypoxic dimensions of injury to the vascular wall as atherogenesis progresses from the stable plaque to the destabilisation of the pathogenic lesions.

Prefigured dimensional projections of the attributes of the individual atherosclerotic plaque conform to the induced properties of a lesion that is expanding within the apparently expanding parameters of injury as delivered by conditioned inflammatory events. Carotid inflammation as assessed by positron emission/computed tomography and microwave radiometry measurements correlates with temperature difference between different carotid segments and inflamed plaques \(^{(14)}\). Performance attributes contribute to a multifocality inherently exhibited as propagated parameters of induction of the injurious agent and events. It is within the formulated distribution of lesions as exemplified within the coronary arteries that further dynamics are produced and actively maintained as depositing phenomena of transformation and expansion within most of the affected vessel. Macrophages are directly implicated in atherogenesis and exhibit different functional phenotypes from the M1 pro-inflammatory to the M2 anti-inflammatory state \(^{(15)}\). Multifocality is one step in the phasic
reproduction of an injury that is also transforming.

Selective Performance

Selectivity of the effective performance of the injurious agonist is complementary to the vaso-reactivity responses of the affected arterial segment and therefore determines distribution of the plaques as integral components of a single atherogenic phenomenon. Inflammatory activity is implicated both in the step-by-step pathophysiology of atherosclerosis and also in the destabilisation of the acute plaque (10). Oxidative injury is especially implicated in the dysfunctional re-distribution of injury as this affects multiple foci of the subintima in particular.

Complex derivation of distributional dimensions is evidenced by the inflammatory activities as inflicted especially by pathways dominated by G-protein coupled receptivity and by the NF-kappaB series of pathways. Intestinal cholesterol metabolism is likely to contribute to atherosclerosis and the metabolic syndrome may be treated in future by interfering with gastrointestinal functionality (17).

Compound reconstitution of the vascular wall is prevented primarily as evidenced performance of inflammatory insults that dynamically promote reactivities of progression as projected by oxidative stress on the one hand and by hypoxia on the other. Injury acquires a distributional and secondary phase formulation within the encompassing range of further injury to the subintima.

Concluding Remarks.

Performance attributes of pathogenesis of the individual atheromatous plaque have to be considered within textual performance of the integral atherogenesis of the entire cardiovascular system. Such considerations are projected further dimensional reconstructions as indicated by possible simulating models of effective transformation and further lesion induction.

The contrasting profiles of transforming induction follow patterned projections as evidenced by the promotional parameters for further change and expansion. Indeed, the expansion of the individual atherosclerotic plaque is mirrored on to the dimensional reconstruction for further atherogenesis in terms of the integral dimensions of an inflammatory series of stimuli.

Such stimuli are further reconstituted by the cytokine/chemokine events in terms further provoked by NF-kappaB and receptivity for injury ranging from oxidative stress to hypoxia.

References

12. Kokkinoua J, Tang S, Rye KA, Ong KL. “The role of fibroblast growth factor 21 in atherosclerosis” Atherosclerosis 2016 pic; S0021-9150(16)31520-0 doi1016

