Novel Drug Nanocarriers for Cancer Therapy: Carbon Nanotubes

Ceyda Tuba Sengel-Turk*
Assistant Professor, Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Tandogan / Ankara, Turkey

Correspondence author: Ceyda Tuba Sengel-Turk, Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Tandogan / Ankara, Turkey

Abstract
Prevalent cancer therapies generally fail due to the improvement of the multidrug resistance, resulting in poor patient prognosis and high morbidity. Nano-sized drug delivery systems provide opportunities to deliver and target the anti-cancer molecules selectively to cancer cells. Among the various nano-sized drug carriers, carbon nanotubes (CNTs) have captivated the significant interest due to their versatile functionalization chemistry, unique physical characteristics, high specific surface area, biological compatibility and capability to pass the biological membranes of the cells. These characteristics offer an opportunity for the treatment of various types of cancer. In this review, the current state of the art applications of CNTs in cancer therapy as a novel drug delivery system will be evaluated. The main types and the structures of CNTs and also, functionalization strategies and cellular uptake mechanisms will be summarized in a general perspective. The potential clinical utilization of CNTs in cancer treatment will be discussed at a level of scientific research platform.

Key words: Carbon Nanotubes, Functionalization, Targeted Delivery, Cancer, Drug Delivery

Introduction
Characterized by the uncontrolled proliferation of cancerous cells as a result of various mutations, cancer is the second leading cause of mortality in the world after cardiovascular disorders. Current therapeutic strategies in cancer treatment are traditionally categorized into two classes: targeted drug delivery approaches and conventional therapies. Radiotherapy, surgery and chemotherapy are the major conventional treatments which are segmented as burning the diseased cells out, removing the cancer cells and poisoning the cancer cells, respectively. However, all these therapies severely damage healthy cells as well, whilst they simultaneously present serious toxic side effects due to the unspecific bio-distribution of the anticancer agents. Of course, it is needless to note that all these negative effects, reduce substantially the quality of life of patients [1–3].
Drug–targeting nano-sized carriers offer a promising approach in cancer treatment to better the efficacy of treatment, improve the delivery of active agents, reduce the side effects, and overcome the resistance of anticancer drugs [4–6]. Hence, a wide variety of nano-sized drug carriers, spanning from polymers and lipid-based nano-sized particles, dendrimers, vesicular systems, to carbon nanotubes (CNTs) and quantum dots, are increasingly investigated in terms of their potential in cancer treatment [3, 7]. Of them, quantum dots are more actively employed for cancer diagnosis (due to their excellent thermal, mechanical, and optical properties) and for the treatment of cancer (due to their inherent hydrophobic nature and unique sp² carbon structure) [8]. Major superiorities of CNTs over the other nano-sized particles are biocompatibility, greater stability, ease of size alteration, non-immunogenity and high drug loading capability [9]. CNTs were firstly described by Sumio Iijima in 1991 as molecular-scale tubes of graphitic carbon with hundreds to thousands of nanometers long, and 1–30 nanometers in diameter [10, 11]. Figure 1 represented the schematic illustration of the CNTs.

Structures of Carbon Nanotubes

CNTs are promising quasi one-dimensional nanomaterials with hollow graphitic cylindrical tubular structure consisting of hexagonal arrangement with sp² hybridized carbon atoms [12]. CNTs are basically categorized according to their structures:

- Single wall carbon nanotubes (SWCNTs)
- Double wall or multi wall carbon nanotubes (MWCNTs)

SWCNTs consist of a single graphite sheet seamlessly wrapped into a cylindrical tube with a diameter of approximately 1–10 nm, whereas MWCNTs is comprised of an array of nanotubes which are concentrically nested like rings of a tree trunk with diameters ranging from 5 to 30 nm. The lengths of CNTs depend on the production technology preferred. One-dimensional structure and high specific surface area of the CNTs render them ideal candidates for cancer treatment [13, 14]. To become less toxic, highly dispersible, and more biocompatible, CNTs are functionalized. Both of the outer and inner surfaces of CNTs could be modified and thus used for the further conjugations with specific ligands, as well as the active compounds to maintain active targeting to the cancer cells. The inner empty cavity of CNTs mostly used for the incorporation of a variety of active molecules with high drug loading [9]. Main categories of functionalization technologies of CNTs are represented in Figure 2.

Cellular Uptake Mechanism of CNTs by Cancer Cells

CNTs are primarily delivered into the cancer cells through receptor-mediated endocytosis [9]. They attach to the surfaces of the biological membranes through electro–static effects or adsorption process, depending on the functional targeting group. Subsequently, this initial binding cause...
a dramatic damage on the cancer cells through generation of reactive oxygen species, resulting in protein denaturation, lipid peroxidation, DNA damage, which result in the death of cancer cells [20]. The transport mechanism of CNTs into the cancer cell compartments is independent from the characteristics of nanotubes and the types of cancer cells. When CNTs are contacted with plasma membranes, they are transferred into the cytoplasmic region of the cell without the apparent need of engulfment into a cellular compartment to facilitate intracellular transport [21, 22]. Dimensions of the CNTs are more effective than the surface chemistry on the uptake capacity of CNTs.

Raffa et al., indicated that short CNTs function as nano–needles and in this way more efficiently penetrated into the cancer cell membrane than the longer ones which often aggregated [23]. Liu et al. developed a SWCNT–paclitaxel conjugate by functionalization paclitaxel to branched polyethylene glycol (PEG) on the surface of CNTs via a cleavable ester bond. The anticancer activity of the SWCNT–paclitaxel conjugate was evaluated on a murine 4T1 breast cancer cells and it was demonstrated that the tumor uptake of developed nanotubular system was 10-fold higher than that of the commercial product of paclitaxel–TAXOL, probably through enhanced permeation and retention (EPR) effect [24]. In another research, Vittoria et al. investigated the biocompatibility and toxicity profiles of the MWCNTs on cultured human neuroblastoma cells SH-SY5Y. After the incubation of these nanomaterials, the maximum cell death (92 %) was observed when covalent-based MWCNTs conjugate for inhibiting pathogenic infection structures in plants, WO2011079356A1 (2011).

